首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
环保管理   1篇
综合类   3篇
污染及防治   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes morem hallenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.  相似文献   
2.
Fungi were isolated from soil samples corresponding to pesticide-contaminated soil (CS) and noncontaminated soil (NCS) in the Annaba vicinity (Algeria) and identified. The number of isolates obtained from CS and NCS were 263 and 288, respectively. The most frequent species (Aspergillus fumigatus, A. niger, A. terreus, Absidia corymbifera, and Rhizopus microsporus var microsporus) were not sensitive to the pesticides. The growth of the genus Trichoderma was inhibited by the pesticides, while genera Absidia and Fusarium were stimulated. The 53 species isolated were assayed for their ability to remove metribuzin from liquid medium. Only Botrytis cinerea from NCS and Sordaria superba and Absidia fusca from CS removed more than 50% of the compound after 5 d. Metamitron was very resistant. Among the 21 species tested, only Alternaria solani (from NCS), Drechslera australiensis (from CS and NCS), and Absidia fusca (from CS) reduced the concentration in the medium more than 10% (10-16%). Twelve species were grown with linuron, seven of them were inefficient in removing this compound. The two strains of Sordaria macrospora yielded 22 to 25% depletion, while Botrytis cinerea depleted linuron almost completely. Among the 31 species assayed for their ability to eliminate metobromuron, Botrytis cinerea (from CS and NCS) depleted almost completely the chemical from the medium. Rhizopus oryzae and Absidia fusca from CS removed 40 and 47% of the compound, respectively. No systematic relationships were observed between the soil contamination and herbicide elimination capacities of soil fungi. Absidia fusca and Botrytis cinerea were particularly interesting for bioremediation purposes because they were able to transform efficiently three of the four compounds assayed.  相似文献   
3.
Accidents caused by the domino effect are the most destructive accidents related to industrial sites. The most typical primary incidents for a domino effect sequence are explosions (57%), followed by fires (43%) (Abdolhamidzadeh et al., 2010). These former can generate three escalation vectors (heat load, overpressure, and fragments), and may affect the surrounding equipments and/or facilities. If the affected targets are damaged, they may also explode and generate other threats to other surrounding facilities and so on. These chains of accidents may lead to catastrophic consequences and may affect not only the industrial sites, but also people, environment and economy. This paper presents a methodology for quantitative assessment of domino effects caused by fire and explosion on storage areas. The individual and societal risks are also estimated.  相似文献   
4.
5.
6.
The purpose of this work was to study the bioremediation capability of Absidia fusca Linnemann (Zygomycete) towards different classes of xenobiotics (lignin-derived compounds, chloroaromatic compounds, polycyclic aromatic hydrocarbons) the presence of which in contaminated soils, water and sediments poses a significant risk to the environment and human health. Two strains from different origins were compared. One was from an official collection and grown in non-inducing conditions, while the other was isolated during the course of the survey of fungal flora in a polluted soil from Annaba (Algeria). All data were analyzed and results validated via a statistical treatment. We showed the effect of the factors studied (origin of the strain, xenobiotic) but also the interactions between these factors. The strain of A. fusca isolated from a polluted soil was able to efficiently degrade most of the xenobiotics tested, particularly: pentachlorophenol, phenol, catechol, guaiacol and ferulic acid. This property also existed in the other strain but at a very low level.  相似文献   
7.
In this paper, for the first time, faujasite Y zeolite impregnated with iron (III) was employed as a catalyst to remove a real cocktail of micropollutants inside real water samples from the Meurthe river by the means of the heterogeneous photo-Fenton process. The catalyst was prepared by the wet impregnation method using iron (III) nitrate nonahydrate as iron precursor. First, an optimization of the process parameters was conducted using phenol as model macro-pollutant. The hydrogen peroxide concentration, the light wavelength (UV and visible) and intensity, the iron loading immobilized, as well as the pH of the solution were investigated. Complete photo-Fenton degradation of the contaminant was achieved using faujasite containing 20 wt.% of iron, under UV light, and in the presence of 0.007 mol/L of H2O2 at pH 5.5. In a second step, the optimized process was used with real water samples from the Meurthe river. Twenty-one micropollutants (endocrine disruptors, pharmaceuticals, personal care products, and perfluorinated compounds) including 17 pharmaceutical compounds were specifically targeted, detected, and quantified. All the initial concentrations remained in the range of nanogram per liter (0.8–88 ng/L). The majority of the micropollutants had a large affinity for the surface of the iron-impregnated faujasite. Our results emphasized the very good efficiency of the photo-Fenton process with a cocktail of a minimum of 21 micropollutants. Except for sulfamethoxazole and PFOA, the concentrations of all the other microcontaminants (bisphenol A, carbamazepine, carbamazepine-10,11-epoxide, clarithromycin, diclofenac, estrone, ibuprofen, ketoprofen, lidocaine, naproxen, PFOS, triclosan, etc.) became lower than the limit of quantification of the LC-MS/MS after 30 min or 6 h of photo-Fenton treatment depending on their initial concentrations. The photo-Fenton degradation of PFOA can be neglected. The photo-Fenton degradation of sulfamethoxazole obeys first-order kinetics in the presence of the cocktail of the other micropollutants.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号